organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

11,20-Dihydroxy-3-oxopregna-1,4-dien-21-oic acid monohydrate

Zhanqiang Guo, Shengan Tang and Hongquan Duan*

School of Pharmaceutical Sciences, Research Center of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, People's Republic of China Correspondence e-mail: duanhp@tijmu.edu.cn

Received 26 January 2011; accepted 22 April 2011

Key indicators: single-crystal X-ray study; T = 113 K; mean σ (C–C) = 0.003 Å; R factor = 0.035; wR factor = 0.085; data-to-parameter ratio = 8.3.

The title compound, $C_{21}H_{28}O_5 \cdot H_2O$, is the hydrate of a steroid derivative and was obtained by degradation of solid prednisolone sodium phosphate. The six C atoms in ring A are nearly co-planar with a mean deviation of 0.015 Å. Rings B and C are both in chair conformations, while ring D has an envelope form. In the crystal, intermolecular $O-H\cdots O$ hydrogen-bonding interactions occur between the hydroxy groups, carbonyl O atoms and solvent water molecules, resulting in an overall three-dimensional structure.

Related literature

For general background to substances related to prednisolone sodium phosphate, see: Dekker (1980); Stroud *et al.* (1980); Mason (1938); Edmonds *et al.* (2006); Gazdag *et al.* (1998). For related structures, see: Suitschmezian *et al.* (2008); Rachwal *et al.* (1996).

Experimental

Crystal data

a = 11.801 (2) Å
b = 12.526 (3) Å
c = 12.884 (3) Å

V = 1904.5 (7) Å ³	
Z = 4	
Mo $K\alpha$ radiation	

Data collection

Rigaku Saturn CCD area-detector	13023 measured reflections
diffractometer	1922 independent reflections
Absorption correction: ψ scan	1809 reflections with $I > 2\sigma(I)$
(CrystalClear; Rigaku, 2005)	$R_{\rm int} = 0.046$
$T_{\min} = 0.981, \ T_{\max} = 0.991$	

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.035$ 232 parameters $wR(F^2) = 0.085$ H-atom parameters constrainedS = 1.06 $\Delta \rho_{max} = 0.22$ e Å $^{-3}$ 1922 reflections $\Delta \rho_{min} = -0.18$ e Å $^{-3}$

 $\mu = 0.10 \text{ mm}^{-1}$ T = 113 K

 $0.20 \times 0.10 \times 0.10$ mm

 Table 1

 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O2-H2\cdots O1^{i}$	0.82	1.92	2.708 (2)	161
O3−H3···O2 ⁱⁱ	0.82	2.06	2.819 (2)	153
O4−H4···O6 ⁱⁱⁱ	0.82	1.84	2.646 (2)	167
O6−H61…O1	0.86	1.92	2.765 (2)	165
$O6-H62\cdots O5^{iv}$	0.86	2.10	2.938 (2)	166

Symmetry codes: (i) $-x + \frac{1}{2}, -y, z - \frac{1}{2}$; (ii) $-x, y + \frac{1}{2}, -z + \frac{1}{2}$; (iii) x, y, z - 1; (iv) $x + \frac{1}{2}, -y + \frac{1}{2}, -z + 1$.

Data collection: *CrystalClear* (Rigaku, 2005); cell refinement: *CrystalClear*; data reduction: *CrystalClear*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

The authors are very grateful to the Central Laboratory of Nankai University for the X-ray data collection. Special thanks go to Dr Xie Chengzhi (School of Pharmaceutical Sciences, Tianjin Medical University) for his invaluable support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BH2337).

References

- Dekker, D. (1980). Pharm. Weekbl. Sci. Ed. 2, 87-95.
- Edmonds, J. S., Morita, M., Turner, P., Skelton, B. W. & White, A. H. (2006). *Steroids*, **71**, 34–41.
- Gazdag, M., Babják, M., Brlik, J., Mahó, S., Tuba, Z. & Görög, S. (1998). J. Pharm. Biomed. Anal. 17, 1029–1036.

Mason, H. J. (1938). J. Biol. Chem. 124, 475-479.

Rachwal, S., Pop, E. & Brewster, M. E. (1996). Steroids, 61, 524-530.

Rigaku (2005). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.

- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Stroud, N., Richardson, N. E., Davies, D. J. G. & Norton, D. A. (1980). Analyst, 105, 455–461.
- Suitschmezian, V., Jess, I., Sehnert, J., Seyfarth, L., Senker, J. & N\"ather, C. (2008). Cryst. Growth Des. 8, 98–107.

supplementary materials

Acta Cryst. (2011). E67, o1290 [doi:10.1107/S1600536811015224]

11,20-Dihydroxy-3-oxopregna-1,4-dien-21-oic acid monohydrate

Z. Guo, S. Tang and H. Duan

Comment

In the molecule of the title compound, (Fig. 1), all bond lengths and angles are within normal ranges (Mason, 1938; Edmonds *et al.*, 2006; Gazdag *et al.*, 1998; Rachwal *et al.*, 1996). Six carbon atoms in ring *A* (C1···C5/C10) are nearly in the same plane with the average atomic displacement of 0.015 Å. Rings *B* (C5···C10) and *C* (C8/C9/C11···C14) are both in chair conformations. Ring *D* (C13···C17) has an envelope form with C13 as the out-of-plane atom. Through extensive O—H···O hydrogen bonds between the main molecule and lattice water molecule, a three dimensional supramolecular network is formed. The water molecules are involved in O—H···O hydrogen bonding with atoms O1, O5 and O4 belonging to hydroxy groups, and intermolecular O—H···O hydrogen-bonding interactions are formed between hydroxy groups and carbonyl O atom, resulting in an overall three-dimensional crystal structure (Fig. 2).

Experimental

The title compound (Dekker, 1980; Stroud *et al.*, 1980) was obtained by degradation of solid prednisolone sodium phosphate at 373 K for 72 h, then extracted and isolated using HSCCC followed by preparative HPLC. Finally, the crystals were prepared by slow evaporation of the solvent from a saturated solution in methanol/acetone/H₂O at room temperature (Suitschmezian *et al.*, 2008).

Refinement

H atoms attached to carbons were placed at calculated positions with C—H = 0.93 Å (aromatic) or 0.96–0.98 Å (sp^3 C-atom). H atoms attached to oxygen was located in difference maps. All H atoms were refined in the riding-model approximation with isotropic displacement parameters (set at 1.2–1.5 times of the U_{eq} of the parent atom). As the structure has no significant anomalous dispersion, the Friedel-pair reflections (1436) were merged and the absolute configuration was assumed from synthesis.

Figures

Fig. 1. The molecular structure of (I), with atom labels and 30% probability displacement ellipsoids, and H atoms are shown as small spheres of arbitrary radius.

Fig. 2. The packing of (I), showing the three-dimensional structure, with intermolecular hydrogen bonds (dashed lines); for clarity H atoms have been omitted.

11,20-Dihydroxy-3-oxopregna-1,4-dien-21-oic acid monohydrate

F(000) = 816 $D_{\rm x} = 1.320 \text{ Mg m}^{-3}$

 $\theta = 4.1-22.5^{\circ}$ $\mu = 0.10 \text{ mm}^{-1}$ T = 113 KBlock, colourless $0.20 \times 0.10 \times 0.10 \text{ mm}$

Mo K α radiation, $\lambda = 0.71073$ Å Cell parameters from 25 reflections

Crystal	data
---------	------

$C_{21}H_{28}O_5 \cdot H_2O$
$M_r = 378.45$
Orthorhombic, $P2_12_12_1$
Hall symbol: P 2ac 2ab
<i>a</i> = 11.801 (2) Å
<i>b</i> = 12.526 (3) Å
c = 12.884(3) Å
V = 1904.5 (7) Å ³
Z = 4

Data collection

Rigaku Saturn CCD area=detector diffractometer	1922 independent reflections
Radiation source: rotating anode	1809 reflections with $I > 2\sigma(I)$
confocal	$R_{\rm int} = 0.046$
Detector resolution: 7.31 pixels mm ⁻¹	$\theta_{\text{max}} = 25.0^{\circ}, \ \theta_{\text{min}} = 2.3^{\circ}$
ω and ϕ scans	$h = -12 \rightarrow 14$
Absorption correction: ψ scan (<i>CrystalClear</i> ; Rigaku, 2005)	$k = -14 \rightarrow 11$
$T_{\min} = 0.981, \ T_{\max} = 0.991$	$l = -15 \rightarrow 15$
13023 measured reflections	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.035$	H-atom parameters constrained
$wR(F^2) = 0.085$	$w = 1/[\sigma^2(F_0^2) + (0.0589P)^2 + 0.0073P]$ where $P = (F_0^2 + 2F_c^2)/3$
<i>S</i> = 1.06	$(\Delta/\sigma)_{\rm max} = 0.001$
1922 reflections	$\Delta \rho_{max} = 0.22 \text{ e} \text{ Å}^{-3}$
232 parameters	$\Delta \rho_{min} = -0.18 \text{ e } \text{\AA}^{-3}$
0 restraints	Extinction correction: <i>SHELXL97</i> (Sheldrick, 2008), Fc [*] =kFc[1+0.001xFc ² λ^3 /sin(20)] ^{-1/4}

0 constraints

Extinction coefficient: 0.026 (3)

Primary atom site location: structure-invariant direct methods

	x	у	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
01	0.30262 (15)	0.07528 (11)	0.89120 (11)	0.0247 (4)
02	0.06804 (6)	0.10188 (5)	0.41310 (5)	0.0210 (4)
H2	0.0958	0.0443	0.3967	0.031*
03	0.15678 (6)	0.53818 (5)	0.12731 (5)	0.0257 (4)
Н3	0.1016	0.5765	0.1169	0.039*
O4	0.29729 (6)	0.36129 (5)	0.13021 (5)	0.0287 (4)
H4	0.3291	0.3118	0.1004	0.043*
O5	0.14172 (6)	0.27905 (5)	0.07258 (5)	0.0340 (4)
O6	0.41158 (6)	0.22413 (5)	1.01436 (5)	0.0318 (5)
H61	0.3671	0.1799	0.9832	0.048*
H62	0.4755	0.2338	0.9842	0.048*
C1	0.17278 (6)	0.04907 (5)	0.64360 (5)	0.0194 (5)
H1A	0.1791	0.0060	0.5851	0.023*
C2	0.2366 (2)	0.02545 (16)	0.72564 (16)	0.0199 (5)
H2A	0.2822	-0.0351	0.7241	0.024*
C3	0.2363 (2)	0.09259 (17)	0.81752 (17)	0.0207 (5)
C4	0.1569 (2)	0.18171 (17)	0.82009 (17)	0.0224 (5)
H4A	0.1530	0.2240	0.8793	0.027*
C5	0.0899 (2)	0.20402 (17)	0.73978 (16)	0.0201 (5)
C6	0.0106 (2)	0.29859 (16)	0.74117 (17)	0.0241 (5)
H6A	0.0172	0.3356	0.8070	0.029*
H6B	-0.0670	0.2740	0.7340	0.029*
C7	0.0390 (2)	0.37501 (17)	0.65283 (16)	0.0228 (5)
H7A	0.1116	0.4084	0.6669	0.027*
H7B	-0.0178	0.4309	0.6503	0.027*
C8	0.0444 (2)	0.31972 (16)	0.54711 (16)	0.0181 (5)
H8A	-0.0314	0.2940	0.5284	0.022*
C9	0.12720 (19)	0.22354 (16)	0.55283 (15)	0.0167 (5)
H9A	0.1988	0.2540	0.5775	0.020*
C10	0.09127 (19)	0.14101 (16)	0.63966 (16)	0.0184 (5)
C11	0.15618 (19)	0.17277 (15)	0.44709 (16)	0.0174 (5)
H11A	0.2245	0.1295	0.4572	0.021*
C12	0.18324 (19)	0.25475 (16)	0.36265 (16)	0.0181 (5)
H12A	0.1871	0.2185	0.2962	0.022*
H12B	0.2573	0.2853	0.3764	0.022*
C13	0.09600 (19)	0.34550 (16)	0.35520 (16)	0.0168 (5)
C14	0.0867 (2)	0.39593 (16)	0.46352 (16)	0.0184 (5)
H14A	0.1635	0.4173	0.4837	0.022*
C15	0.0199 (2)	0.49927 (16)	0.44477 (17)	0.0227 (5)
H15A	0.0346	0.5513	0.4989	0.027*
H15B	-0.0609	0.4854	0.4416	0.027*
C16	0.0655 (2)	0.53830 (17)	0.33857 (17)	0.0229 (5)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

supplementary materials

H16A	0.1135	0.6004	0.3478	0.027*
H16B	0.0032	0.5574	0.2930	0.027*
C17	0.1345 (2)	0.44450 (16)	0.29164 (16)	0.0195 (5)
H17A	0.2148	0.4572	0.3068	0.023*
C18	-0.0186 (2)	0.30495 (17)	0.31488 (17)	0.0200 (5)
H18A	-0.0077	0.2683	0.2502	0.030*
H18B	-0.0687	0.3644	0.3046	0.030*
H18C	-0.0511	0.2568	0.3647	0.030*
C19	-0.0274 (2)	0.08996 (18)	0.62344 (17)	0.0235 (5)
H19A	-0.0211	0.0305	0.5768	0.035*
H19B	-0.0780	0.1421	0.5946	0.035*
H19C	-0.0564	0.0657	0.6889	0.035*
C20	0.1205 (2)	0.43974 (17)	0.17282 (16)	0.0215 (5)
H20A	0.0400	0.4298	0.1570	0.026*
C21	0.1867 (2)	0.35143 (18)	0.12036 (17)	0.0233 (5)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0291 (10)	0.0234 (8)	0.0217 (8)	0.0045 (7)	-0.0075 (7)	0.0019 (6)
O2	0.0207 (9)	0.0169 (8)	0.0253 (8)	-0.0009 (6)	0.0002 (7)	-0.0033 (7)
03	0.0265 (10)	0.0221 (8)	0.0284 (9)	0.0012 (7)	0.0011 (7)	0.0086 (7)
O4	0.0228 (10)	0.0311 (9)	0.0322 (9)	0.0030 (7)	0.0013 (8)	-0.0065 (7)
O5	0.0325 (11)	0.0357 (9)	0.0337 (9)	-0.0032 (8)	0.0029 (9)	-0.0137 (8)
O6	0.0277 (11)	0.0355 (10)	0.0323 (9)	0.0005 (8)	0.0001 (8)	-0.0097 (8)
C1	0.0205 (13)	0.0162 (10)	0.0214 (11)	0.0000 (9)	0.0029 (10)	0.0009 (9)
C2	0.0215 (13)	0.0138 (10)	0.0246 (11)	0.0029 (9)	-0.0001 (10)	0.0040 (9)
C3	0.0233 (13)	0.0181 (11)	0.0207 (11)	-0.0007 (9)	0.0016 (10)	0.0040 (9)
C4	0.0266 (14)	0.0222 (11)	0.0184 (11)	0.0017 (10)	0.0032 (10)	0.0001 (9)
C5	0.0213 (13)	0.0206 (11)	0.0184 (11)	0.0007 (9)	0.0022 (10)	0.0021 (9)
C6	0.0282 (14)	0.0233 (11)	0.0207 (11)	0.0111 (10)	0.0036 (10)	-0.0003 (9)
C7	0.0277 (14)	0.0209 (11)	0.0197 (11)	0.0069 (9)	0.0001 (10)	0.0000 (9)
C8	0.0180 (13)	0.0177 (11)	0.0187 (11)	0.0035 (9)	-0.0004 (9)	-0.0006 (9)
C9	0.0155 (12)	0.0173 (10)	0.0174 (11)	0.0011 (9)	0.0009 (9)	0.0009 (9)
C10	0.0188 (13)	0.0180 (10)	0.0184 (11)	0.0023 (9)	-0.0005 (10)	0.0041 (9)
C11	0.0151 (12)	0.0160 (10)	0.0209 (11)	0.0017 (9)	-0.0015 (9)	-0.0020 (9)
C12	0.0176 (13)	0.0186 (10)	0.0181 (11)	0.0013 (9)	0.0010 (10)	-0.0023 (8)
C13	0.0160 (12)	0.0168 (10)	0.0176 (11)	0.0006 (9)	0.0004 (9)	-0.0003 (9)
C14	0.0190 (12)	0.0172 (10)	0.0189 (11)	0.0006 (9)	-0.0028 (9)	-0.0003 (9)
C15	0.0282 (14)	0.0173 (11)	0.0226 (11)	0.0041 (10)	-0.0008 (10)	-0.0001 (9)
C16	0.0290 (14)	0.0164 (10)	0.0232 (12)	0.0019 (10)	-0.0018 (10)	0.0021 (9)
C17	0.0206 (13)	0.0177 (11)	0.0201 (11)	-0.0021 (9)	-0.0018 (10)	0.0030 (9)
C18	0.0183 (13)	0.0194 (11)	0.0222 (11)	0.0019 (9)	-0.0017 (10)	0.0009 (9)
C19	0.0201 (13)	0.0250 (11)	0.0254 (12)	-0.0013 (10)	0.0005 (10)	0.0042 (10)
C20	0.0205 (13)	0.0226 (11)	0.0213 (12)	-0.0019 (9)	-0.0008 (10)	0.0027 (9)
C21	0.0243 (14)	0.0268 (12)	0.0189 (11)	-0.0011 (10)	0.0001 (10)	0.0040 (10)

Geometric parameters (Å, °)

O1—C3	1.249 (3)	C9—C10	1.581 (3)
O2—C11	1.436 (2)	С9—Н9А	0.9800
O2—H2	0.8200	C10—C19	1.554 (3)
O3—C20	1.431 (2)	C11—C12	1.530 (3)
O3—H3	0.8200	C11—H11A	0.9800
O4—C21	1.317 (3)	C12—C13	1.537 (3)
O4—H4	0.8200	C12—H12A	0.9700
O5—C21	1.218 (2)	C12—H12B	0.9700
O6—H61	0.8616	C13—C18	1.535 (3)
O6—H62	0.8572	C13—C14	1.536 (3)
C1—C2	1.331 (2)	C13—C17	1.554 (3)
C1—C10	1.501 (2)	C14—C15	1.535 (3)
C1—H1A	0.9300	C14—H14A	0.9800
C2—C3	1.452 (3)	C15—C16	1.550 (3)
C2—H2A	0.9300	C15—H15A	0.9700
C3—C4	1.458 (3)	C15—H15B	0.9700
C4—C5	1.332 (3)	C16—C17	1.552 (3)
C4—H4A	0.9300	C16—H16A	0.9700
C5—C6	1.510 (3)	C16—H16B	0.9700
C5-C10	1.512 (3)	C17—C20	1.541 (3)
С6—С7	1.525 (3)	C17—H17A	0.9800
С6—Н6А	0.9700	C18—H18A	0.9600
С6—Н6В	0.9700	C18—H18B	0.9600
С7—С8	1.529 (3)	C18—H18C	0.9600
С7—Н7А	0.9700	C19—H19A	0.9600
С7—Н7В	0.9700	C19—H19B	0.9600
C8—C14	1.524 (3)	C19—H19C	0.9600
С8—С9	1.553 (3)	C20—C21	1.514 (3)
C8—H8A	0.9800	C20—H20A	0.9800
C9—C11	1.542 (3)		
С11—О2—Н2	109.5	C11—C12—H12A	108.8
С20—О3—Н3	109.5	C13—C12—H12A	108.8
C21—O4—H4	109.7	C11—C12—H12B	108.8
H61—O6—H62	114.6	C13—C12—H12B	108.8
C2-C1-C10	124.04 (13)	H12A—C12—H12B	107.7
C2—C1—H1A	118.0	C18—C13—C14	112.39 (19)
C10-C1-H1A	118.0	C18—C13—C12	111.51 (17)
C1—C2—C3	121.15 (17)	C14—C13—C12	107.16 (17)
С1—С2—Н2А	119.4	C18—C13—C17	110.08 (18)
С3—С2—Н2А	119.4	C14—C13—C17	99.87 (15)
O1—C3—C2	121.2 (2)	C12—C13—C17	115.30 (18)
O1—C3—C4	121.2 (2)	C8—C14—C15	118.08 (19)
C2—C3—C4	117.6 (2)	C8—C14—C13	114.08 (16)
C5—C4—C3	121.6 (2)	C15—C14—C13	103.91 (17)
С5—С4—Н4А	119.2	C8—C14—H14A	106.7
С3—С4—Н4А	119.2	C15—C14—H14A	106.7

supplementary materials

C4—C5—C6	121.6 (2)	C13—C14—H14A	106.7
C4—C5—C10	123.2 (2)	C14—C15—C16	103.08 (18)
C6—C5—C10	115.21 (18)	C14—C15—H15A	111.1
C5—C6—C7	110.30 (19)	C16—C15—H15A	111.1
С5—С6—Н6А	109.6	C14—C15—H15B	111.1
С7—С6—Н6А	109.6	C16—C15—H15B	111.1
С5—С6—Н6В	109.6	H15A—C15—H15B	109.1
С7—С6—Н6В	109.6	C15—C16—C17	106.71 (17)
H6A—C6—H6B	108.1	C15—C16—H16A	110.4
C6—C7—C8	112.93 (17)	C17—C16—H16A	110.4
С6—С7—Н7А	109.0	C15—C16—H16B	110.4
С8—С7—Н7А	109.0	C17—C16—H16B	110.4
С6—С7—Н7В	109.0	H16A—C16—H16B	108.6
С8—С7—Н7В	109.0	C20—C17—C16	111.11 (18)
H7A—C7—H7B	107.8	C20—C17—C13	117.47 (18)
C14—C8—C7	111.05 (17)	C16—C17—C13	104.20 (16)
C14—C8—C9	108.23 (18)	С20—С17—Н17А	107.9
С7—С8—С9	109.56 (17)	С16—С17—Н17А	107.9
C14—C8—H8A	109.3	С13—С17—Н17А	107.9
С7—С8—Н8А	109.3	C13—C18—H18A	109.5
С9—С8—Н8А	109.3	C13—C18—H18B	109.5
C11—C9—C8	114.68 (17)	H18A—C18—H18B	109.5
C11—C9—C10	114.52 (16)	C13—C18—H18C	109.5
C8—C9—C10	111.82 (17)	H18A—C18—H18C	109.5
С11—С9—Н9А	104.8	H18B—C18—H18C	109.5
С8—С9—Н9А	104.8	С10—С19—Н19А	109.5
С10—С9—Н9А	104.8	С10—С19—Н19В	109.5
C1—C10—C5	112.22 (16)	H19A—C19—H19B	109.5
C1-C10-C19	105.45 (15)	C10-C19-H19C	109.5
C5-C10-C19	108.68 (18)	H19A—C19—H19C	109.5
C1—C10—C9	110.70 (16)	H19B—C19—H19C	109.5
C5—C10—C9	105.37 (16)	O3—C20—C21	107.00 (16)
С19—С10—С9	114.56 (18)	O3—C20—C17	109.98 (17)
O2-C11-C12	110.45 (16)	C21—C20—C17	114.63 (19)
O2—C11—C9	111.34 (16)	O3—C20—H20A	108.4
C12—C11—C9	113.44 (16)	C21—C20—H20A	108.4
O2-C11-H11A	107.1	C17—C20—H20A	108.4
C12—C11—H11A	107.1	O5—C21—O4	123.4 (2)
C9—C11—H11A	107.1	O5—C21—C20	123.0 (2)
C11—C12—C13	113.65 (17)	O4—C21—C20	113.57 (18)
C10—C1—C2—C3	-3.6 (3)	O2-C11-C12-C13	77.4 (2)
C1—C2—C3—O1	-174.30 (19)	C9—C11—C12—C13	-48.4 (3)
C1—C2—C3—C4	4.9 (3)	C11—C12—C13—C18	-68.5 (2)
O1—C3—C4—C5	176.5 (2)	C11—C12—C13—C14	54.9 (2)
C2—C3—C4—C5	-2.7 (3)	C11—C12—C13—C17	165.03 (17)
C3—C4—C5—C6	-177.9 (2)	C7—C8—C14—C15	-58.4 (3)
C3—C4—C5—C10	-0.9 (4)	C9—C8—C14—C15	-178.66 (18)
C4—C5—C6—C7	120.0 (2)	C7—C8—C14—C13	179.2 (2)
C10—C5—C6—C7	-57.2 (3)	C9—C8—C14—C13	58.9 (2)

C5—C6—C7—C8	52.4 (3)	C18—C13—C14—C8	60.7 (2)
C6—C7—C8—C14	-173.2 (2)	C12—C13—C14—C8	-62.1 (2)
C6—C7—C8—C9	-53.7 (3)	C17—C13—C14—C8	177.38 (19)
C14—C8—C9—C11	-48.7 (2)	C18—C13—C14—C15	-69.2 (2)
C7—C8—C9—C11	-169.93 (19)	C12-C13-C14-C15	167.97 (17)
C14—C8—C9—C10	178.76 (17)	C17—C13—C14—C15	47.5 (2)
C7—C8—C9—C10	57.5 (2)	C8-C14-C15-C16	-164.81 (19)
C2-C1-C10-C5	0.1 (2)	C13-C14-C15-C16	-37.3 (2)
C2-C1-C10-C19	-118.10 (18)	C14—C15—C16—C17	12.2 (2)
C2-C1-C10-C9	117.47 (18)	C15-C16-C17-C20	144.16 (19)
C4C5C10C1	2.2 (3)	C15-C16-C17-C13	16.7 (2)
C6—C5—C10—C1	179.43 (17)	C18—C13—C17—C20	-43.8 (3)
C4—C5—C10—C19	118.5 (2)	C14—C13—C17—C20	-162.2 (2)
C6—C5—C10—C19	-64.4 (2)	C12-C13-C17-C20	83.4 (3)
C4—C5—C10—C9	-118.3 (2)	C18—C13—C17—C16	79.6 (2)
C6—C5—C10—C9	58.9 (2)	C14—C13—C17—C16	-38.8 (2)
C11-C9-C10-C1	47.5 (2)	C12-C13-C17-C16	-153.20 (19)
C8—C9—C10—C1	-179.92 (15)	C16—C17—C20—O3	58.4 (2)
C11—C9—C10—C5	169.00 (19)	C13—C17—C20—O3	178.26 (17)
C8—C9—C10—C5	-58.4 (2)	C16-C17-C20-C21	179.04 (18)
C11-C9-C10-C19	-71.6 (2)	C13-C17-C20-C21	-61.2 (3)
C8—C9—C10—C19	61.0 (2)	O3—C20—C21—O5	-120.4 (2)
C8—C9—C11—O2	-80.3 (2)	C17—C20—C21—O5	117.4 (2)
C10—C9—C11—O2	51.0 (2)	O3—C20—C21—O4	58.8 (2)
C8—C9—C11—C12	45.0 (3)	C17—C20—C21—O4	-63.5 (2)
C10-C9-C11-C12	176.29 (18)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
O2—H2···O1 ⁱ	0.82	1.92	2.708 (2)	161.
O3—H3···O2 ⁱⁱ	0.82	2.06	2.819 (2)	153.
O4—H4…O6 ⁱⁱⁱ	0.82	1.84	2.646 (2)	167.
O6—H61…O1	0.86	1.92	2.765 (2)	165.
O6—H62···O5 ^{iv}	0.86	2.10	2.938 (2)	166.
	1/2 1/2 (***)	1 () +1/2	. 1 / 2 1	

Symmetry codes: (i) -x+1/2, -y, z-1/2; (ii) -x, y+1/2, -z+1/2; (iii) x, y, z-1; (iv) x+1/2, -y+1/2, -z+1.

Fig. 2